Recognition of cap structure by influenza B virus RNA polymerase is less dependent on the methyl residue than recognition by influenza A virus polymerase.
نویسندگان
چکیده
The cap-dependent endonuclease activity of the influenza virus RNA-dependent RNA polymerase cleaves host mRNAs to produce capped RNA fragments for primers to initiate viral mRNA synthesis. The influenza A virus (FluA) cap-dependent endonuclease preferentially recognizes the cap1 structure (m(7)GpppNm). However, little is known about the substrate specificity of the influenza B virus (FluB) endonuclease. Here, we determined the substrate specificity of the FluB polymerase using purified viral RNPs and (32)P-labeled polyribonucleotides containing a variety of cap structures (m(7)GpppGm, m(7)GpppG, and GpppG). We found that the FluA polymerase cleaves m(7)G-capped RNAs preferentially. In contrast, the FluB polymerase could efficiently cleave not only m(7)G-capped RNAs but also unmethylated GpppG-RNAs. To identify a key amino acid(s) related to the cap recognition specificity of the PB2 subunit, the transcription activity of FluB polymerases containing mutated cap-binding domains was examined by use of a minireplicon assay system. In the case of FluA PB2, Phe323, His357, and Phe404, which stack the m(7)GTP, and Glu361 and Lys376, which make hydrogen bonds with a guanine base, were essential for the transcription activity. In contrast, in the case of FluB PB2, the stacking interaction of Trp359 with a guanine base and putative hydrogen bonds using Gln325 and Glu363 were enough for the transcription activity. Taking these results together with the result for the cap-binding activity, we propose that the cap recognition pocket of FluB PB2 does not have the specificity for m(7)G-cap structures and thus is more flexible to accept various cap structures than FluA PB2.
منابع مشابه
Development and Evaluation of Real-Time Reverse Transcription Polymerase Chain Reaction Test for Quantitative and Qualitative Recognition of H5 Subtype of Avian Influenza Viruses
Avian influenza viruses (AIV) affect a wide range of birds and mammals, cause severe economic damage to the poultry industry, and pose a serious threat to humans. Highly pathogenic avian influenza viruses (HPAI) H5N1 were first identified in Southeast Asia in 1996 and spread to four continents over the following years. The viruses have caused high mortality in chickens and various bird species ...
متن کاملDevelopment of Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Detection of Influenza A, B and Adenoviruses
Background and objective:Millions of people in developing countries lose their lives due to acute respiratory infections, such as Influenza A & B and Adeno viruses. Given the importance of rapid identification of the virus, in this study the researchers attempted to design a method that enables detection of influenza A, B, and adenoviruses, quickly and simultaneously. ...
متن کاملExpression of Influenza Heamagglutinin Globular Head in Different Eukaryotic Cells
Background and Aims: Influenza (flu) is a respiratory infection in mammals and birds. It is caused by an RNA virus in the family Orthomyxoviridae. The virus is divided into three main types. Influenza virus type A is found in a wide variety of bird and mammal species and can undergo major shifts in immunological properties. Hemagglutinin (HA) is an important influenza virus surface antigen that...
متن کاملDetection of Human Influenza Viruses in Nasopharyngeal Samples by RT-PCR vs Tissue Culture
Background and Aims: Influenza virus is a major pathogen involved in respiratory illnesses during winter seasons. A variety of diagnostic methods have been developed to identify influenza viruses in clinical specimen. Methods: Nasal and pharyngeal samples taken from patients were inoculated into Madin-Darby canine kidney (MOCK) cells and embryonated chicken eggs (ECEs). The culture media was a...
متن کاملA Reverse transcription-PCR assay for detection of type A influenza virus and differentiation of avian H7 subtype
Abstract : Avian influenza virus (AIV) infection is a major cause of influenza mortality in birds and can cause human mortality and morbidity. Although the risk of infection with avian influenza virus (AIV) is generally low for most people, the pathogenic virus can cross the species barrier and acquires the ability to infect and be transmitted among the human population; therefore the ra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 85 15 شماره
صفحات -
تاریخ انتشار 2011